M1. (a) any two from:

- fewer trees to take in carbon dioxide for photosynthesis
- decomposers / microorganisms respire (as they decay debris) releasing carbon dioxide
- burning of wood releases carbon dioxide
allow carbon dioxide released by burning fossil fuels in vehicles / factories
(b) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5, and apply a 'best fit' approach to the marking.

0 marks
No relevant content.

Level 1 (1-2 marks)

There is a brief description of some steps in the process but the order is not clear with little biological vocabulary used.

Level 2 (3-4 marks)
There is a reasonably clear description of the process involving many of the steps and using some biological vocabulary.

Level 3 (5-6 marks)

There is a clear, logical and detailed scientific description of the process using appropriate biological vocabulary.

examples of biology points made in the response:

- this contains mineral ions (and organic matter)
- this increases growth of algae / water plants
- the plants / algae (underneath) die
- due to lack of light / photosynthesis / space
- decomposers / microorganisms feed on decaying matter or multiply rapidly
- the respiration of decomposers uses up all the oxygen
- so invertebrates die due to lack of oxygen
- this is called eutrophication

M2. (a) (i) anaerobic respiration
or
fermentation
(ii) oxygen is present
accept O_{2}
do not accept O, O^{2} or O^{2}
aerobic respiration occurs
ignore anaerobic
CO_{2} from respiration
allow from fermentation
(b) high methane after this time ignore CO_{2}
(c) organic matter / food / nutrients / named eg used up / reactants allow too hot / accumulation of toxins / named do not allow products ignore energy

M3. (a) 0.18

> award both marks for correct answer irrespective of working if no answer or incorrect answer
> allow 1 mark for $45 \times 100 / 25000$
(b) heat / thermal
allow heat from respiration
(c) energy / mass / biomass lost / not passed on or energy / mass / biomass is used or not enough energy / mass / biomass left ignore reference to losses via eg respiration / excretion / movement / heat
a sensible / appropriate use of figures including heron
eg only 2 from frog / to heron
ignore units
(d) any three from:
accept marking points if candidate uses other terms for microorganisms

- (microorganisms) decay / decompose / digest / breakdown / rot ignore eat
- (breakdown) releases minerals / nutrients / ions / salts / named ignore food
- (microorganisms) respiration
ignore other organisms respiring
- (microorganisms / respiration) release of carbon dioxide

M4. (a) (i) 5.2
award 2 marks for correct answer, irrespective of workingor lack of it
award 1 mark for $62.4 \div 12$ only with incorrect or no answer
(ii) the smaller the (mass of the) bird the more energy is needed(per gram of body mass)
allow converse
ignore figures
(iii) smaller bird has larger surface area : volume / mass ratio allow converse
so heat / energy lost more quickly allow lose more heat / energy if (a)(ii) describes a trend of more energy with increasing body mass allow one mark for idea of more energy needed for flight
(b) larger birds spend less time feeding
accept converse
allow the less energy they need per day the longer they spend feeding
since they need less food per gram of body mass (to satisfy energy needs)

M5. (a) use of quadrat / point frame allow description
randomly placed / random sampling ignore reference to transects
(b) (i) 6
(ii) more light in A / in field / where sunny
more / better / faster photosynthesis in A / with more light allow converse

ignore sun

(iii) use light meter / measure light intensity in both habitats
take many measurements at same time of the day

or

laboratory / field investigation with 2 batches high light and low light (1)
count or number of flowers in each (1)
counting point is dependent on investigation point
(c) more glucose / energy available
allow other named product eg protein

Page 6

allow if more energy produced
for growth
dependent on 1st mark

M6.(a) (i) to get data re position of seaweed / of organism
in relation to distance from sea / distance down shore / how long each seaweed was exposed
(ii) repeat several times minimum $=2$ repeats
elsewhere along the shore
(iii) bladder wrack is further up the shore (than the sea lettuce) / exposed for longer
ignore found in dry areas / on bare rock
sea lettuce (only) in rock pools / in the sea / (only) in water
(b) gets more light / closer to light
allow better access to CO_{2}
(so) more photosynthesis
allow 1 mark for light for photosynthesis
allow 1 mark for CO_{2} for photosynthesis
ignore reference to oxygen for respiration
'more' only needed once for 2 marks

M7.(a) (i) (initially there is) oxygen
accept:
oxygen hasn't been used up yet (so not anaerobic conditions yet)
(so) aerobic respiration (by microorganisms)
accept (because) methane is produced in anaerobic (fermentation)
producing CO_{2} (which does not burn)
accept there is no methane ignore inflammable
(sheep manure) produces biogas with a higher percentage methane or produces 2\% more methane
allow correct difference in volume calculated using 0.408(7) / 0.41 / 0.409 minus answer given in (i) for 2 marks

M8. (a) extremophile(s)
(b) (i) common (periwinkle) and flat (periwinkle) either order, both required
(ii) (common and flat) both live in the same habitat / area / named area allow habitats overlap the most
(iii) any two from:

- would have wrong food
- would otherwise be exposed to (specific) predators
- cannot tolerate extended exposure to air or reduced submersion in seawater
allow cannot tolerate temperature / dehydration
- cannot tolerate high salt concentration (in rock pools) allow low salt concentration (in rock pools)
- cannot compete with small periwinkle

